
Systematic IT
Modernization

2955 Inca St, Suite 1A, Denver, CO 80202 • © 2016, 2022 DevIQ • All rights reserved.

Strangling the Beast

Transforming legacy systems & optimizing for
fast flow business enablement

Shawn Davison
Managing Partner

Building Software.
Improving Life.

The Challenge To Modernize

Businesses today are often under extreme
pressure to transform their information
technology. There is pressure to become
more nimble, more entrepreneurial, and to
incorporate the rising wave of digital capa-
bilities. Sales and Marketing consistently
raise the issue that their ability to engage
and service customers is being
impaired by the aging capabilities of the
company's technology infrastructure or
foster the perception that IT cannot move
fast enough. Moreover, Management faced
with revenue objectives increasingly
demand hyper-responsiveness to rapidly
changing market conditions.

Standing still and resting on past brand
success and legacy systems is no longer
acceptable. Often, the cost to maintain
aging infrastructure is escalating yearly and
becoming an inordinate portion of their
budget. Emerging technologies such as
Mobile, Cloud, IoT, and Analytics lower barri-
ers to entry and enable new market
entrants to leapfrog incumbents at alarming
speed. Navigating the path to modernization

can be difficult and complex. Within the IT
group, leaders confront numerous obsta-
cles to transformation.

Another challenge is that the composition,
culture, and capabilities of the development
team may be out of sync with current indus-
try practices, restricting their ability to
respond to the evolving needs of the busi-
ness and the customer. In light of these
conditions, most executives grasp the
imperative of modernization. The challenge
is tackling the problem with the most effi-
cient approach.

The Path To IT Modernization

There are multiple ways to transform a
legacy system, including a wholesale
replacement or a software rewrite. The
challenge with wholesale replacement is
that valuable business rules and operational
knowledge may be lost in the transition.
Further, IT leaders may have experienced a
painful wholesale replacement due to signif-
icant customization, because in retrospect,
the software did not meet key business
requirements.

Driven by this exploding pace of competi-
tion and innovation, IT and development
leaders struggle with a rising critical consid-
eration —how to modernize underperform-
ing capabilities.

DevIQ.io 2

IT Modernization is fundamentally the
process of systematically retooling infra-
structure + pragmatic software refactoring
of legacy systems, to realign them with
business needs.

Customers

Proxy Service

micro
Service
(μS)

Existing
monolithic
application

Customers

Proxy Service

Mono
App

micro
Service
(μS)

Customers

Existing
monolithic
application

Service

micro
Service
(μS)

Customers

Time

μS

μS
μS

μS

μS μS

μS

Strangler Architecture Evolution

Fig. 1: Martin Fowler first introduced the concept of a Strangler Application aka Strangler Pattern in 2004. Since then, it has been used widely
as a pragmatic and cost effective method for legacy software transformation1. Modern proxy services enable the abstraction and
management of legacy and modern microServices. (https://martinfowler.com/bliki/StranglerFigApplication.html)

The alternative perspective is that custom
software development or a rewrite of a pro-
prietary legacy system is the best way
forward. However, not all software refactor-
ing methods are created equal.

Frequently, IT teams embark on a major
software rewrite by employing a monolithic
approach that relies on extensive upfront
planning, minimal early stage feedback on
assumptions, and extended timeframes
between product deliverables. This approach
typically results in miscommunications, cost
overruns, and failed expectations. In our
experience, a more effective approach to
software modernization is "systematic refac-
toring".

The Components Of
Systematic IT Modernization

Systematic IT modernization starts with the
premise that the most performant IT groups
function best in a highly adaptive learning
environment. This means minimizing upfront
planning and focusing on defining and
building small, incremental yet viable pieces
of functionality. In this way, features can be
quickly and inexpensively tested with the
customer, thereby validating assumptions,
reducing overall project risk and allowing
the team to rapidly learn and adapt. One of
the best known strategies for incremental,
systematic refactoring of legacy software is
often referred to as strangulation or “stran-
gling the beast” based on work done by
Martin Fowler.

DevIQ.io 3

How To “Strangle The Beast”

Systematically refactoring a legacy environ-
ment optimizes project success by allowing
the IT team to confidently lead transforma-
tion and deliver business value in a timely
manner. Our approach to legacy strangula-
tion leverages four key components: a
transformation strategy, the right team
topology, a continuous delivery pipeline, and
modern development tools that enable
Automation.

Transformation Strategy
(Strangler Architecture Pattern)

Major software rewrites fail most often due
to project cancellation risk, which can usual-
ly be attributed to underestimating effort
and the resulting cost overruns. Agile +
LEAN + DevOps principles and practices go
a long way to alleviate this risk; however, it’s
not enough to ensure success when replac-
ing or rewriting a legacy system. A transfor-
mation strategy is necessary to enable an
organization to go from Point A (project
start) to Point B (project completion) with
predictability. At DevIQ, our primary legacy
transformation strategy is an adoption of a
mature concept and pattern called the
Strangler Architecture.

The premise of the Strangler Architecture is
that the legacy system is complex enough

that it needs to be split up into parts and
migrated over a prescribed period of
time--enabling the business to continue to
operate as needed. The bigger challenge in
this approach is knowing where to “cut” a
monolith to create “seams” or appropriate
scope and interfaces. Modern proxy service
technologies, such as Envoy Proxy (https://w-

ww.envoyproxy.io/), enable abstraction and
management of the parts.

DevIQ.io 4

DevOps
(Development + Operations)
A culture and practice that integrates software
development and IT operations activities while
automating the process of software delivery
and infrastructure changes. It aims at estab-
lishing a culture and environment where
building, testing, and releasing software can
happen rapidly, frequently, and more reliably

CI
(Continuous Integration)
A software development method where team
members integrate their work on a continual
basis. This accelerates deployment and
ensures that all developers are working with
the most up-to-date iteration of the code.
Builds are verified using automated testing to
detect integration errors as quickly as possible.

CD
(Continuous Delivery)
A modern method of deploying software into
production or into the hands of users safely
and quickly in a sustainable way.

Glossary

The Right Team Topology

How you organize your teams to execute on
software development greatly impacts the
outcome and ability to create “fast flow”.
Team Topologies principles, based on Con-
way’s Law have become the de facto stan-
dard for creating high-performance software
delivery organizations.

The separation between product-oriented
Platform teams and Stream-aligned teams
has become particularly important in reduc-
ing dependencies and increasing feature
velocity.

Integrating DevOps practices into a legacy
environment can be a significant challenge.
Changing the culture is as important as the
process and technologies. Selecting and
cultivating the right team structure is critical
to success (https://web.devopstopologies.com/).

Continuous Delivery Pipeline
(Agile + DevOps Culture + Tools)

Continuous Delivery embraces the integra-
tion of multiple software creation trends,
including LEAN Agile methodologies and
DevOps. Agile software development meth-
ods are not new but they have evolved as
practitioners applied LEAN approaches to
operations work.

Agile has become the prescribed method for
software development for most modern
organizations. However, in many cases these
organizations are implementing a hybrid
approach, commonly known as “Water
SCRUM Fall”. Gated upfront requirements
and estimation processes, in combination
with siloed production and release opera-
tions, have effectively stifled the vision of
what Agile promised, resulting in similar costs
to pre-Agile methods and marginal benefits
in some cases.

LEAN extends the Agile philosophy of short
development cycles to the practice of exper-
imenting with small, viable product deliveries.
This is especially effective when applied to
legacy refactoring projects.

DevOps Culture builds on the value of collab-
oration between development and opera-
tions staff throughout all stages of the soft-
ware development life cycle.

DevIQ.io 5

DevOps is not a project or technology; it is a
cultural movement for enabling continuous
improvement.

Fig. 2: Team Topologies (https://teamtopologies.com/key-concepts)

One of the primary tenets of DevOps culture
is “sharing information proactively”. Collabo-
ration tools such as Slack and Teams have
accelerated this cultural movement.

Automation is the systematic process of
refactoring software development, test, and
deployment systems to reduce delivery time.
Also known as Continuous Integration /
Continuous Deployment (CI/CD), automation
dramatically improves software quality, in
combination with Test Driven Development
(TDD), by replacing repetitive tasks that no
longer have to be done manually, thus
reducing churn and increasing
speed-to-market. By incorporating automat-
ed tests in the CI process, regression
bugs—defects that are introduced in previ-
ously working functionality—can be reduced
significantly if not eliminated.

The resulting Continuous Delivery Pipeline
enables faster Mean Time to Repair (MTTR),
which is more relevant today than traditional
Mean Time Between Failure (MTBF) metrics.

The combination of LEAN Agile + DevOps
Culture + Automation Tools creates a part-
nership between all relevant business
owners including Product Management,
Developers, QA, and most importantly both
internal and external customers. The result is
a culture and practice of operations and
development working closely together
throughout the entire refactoring lifecycle.
This includes iterative development cycles
and interactive communication during
design, development, Continuous Delivery,
and production support. Figure 3 illustrates
key components of a Continuous Delivery
Pipeline.

DevIQ.io 6

Fig. 3: DevIQ Continuous Delivery Pipeline (simplified).

Continuous Delivery Pipeline

Code is developed
in small intervals,
one feature or
“story” at a time

Checked into a Repo,
automatically Built,
and optionally put
into a “Container”

Automated Tests
execute to ensure
no regressions are
introduced

Changes are deployed
incrementally to Stage
and then to Production

Functionality
is available
to Users

Build

User Feedback

Code Test Deploy

Fig. 4: Continuous Delivery Framework benefits

Increased
speed-to-market

+ lower cost

Continuous
Delivery Engine
(Tools + Process +

DevOps Culture)

Leaps in Technology
(examples)

Cloud Infrastructure and Services
Single-page web app frameworks
Continuous Integration Systems

Asynchronous Event / Stream Processing
Machine Learning / Deep Learning
Ubiquitous Languages and Tools

DevOps Culture
Continuous Improvement

Fast Flow Team Topologies
LEAN Agile Principles

Collaboration and Sharing
Product Oriented Mindset

Consistent Reliable Delivery

Results
(10x or more)

Modern Development Tools

What makes a systematic IT modernization
or refactoring approach even more attrac-
tive in today’s business climate is the power-
ful combination of a Continuous Delivery
Pipeline with the latest generation of devel-
opment technologies. State-of-the- market
tools and Cloud platforms can deliver a
whopping 10x or more improvement in terms
of transforming legacy applications into
market leading capabilities, productivity and
performance. Utilizing proven leading tech-
nologies ensures the longest possible prod-
uct life, as well as providing a platform that

can be responsively enhanced as market
conditions change.

Continuous Delivery Framework
(Structured Process + Proven
Tools)

How do you pick the right tools? There are
so many tools available now, that it’s diffi-
cult to keep up and know what is best for
solving the problem at hand. Open source
software has become ubiquitous, and the
pendulum has moved from concern of use
to critical requirement. The challenge is
staying current and having a strategy for
retooling in this ever-accelerating world.
Ideally, what is needed is a transformation
framework that transcends the current
specific technology — enabling a way to
systematically retool the development

DevIQ.io 7

Side Benefits of Continuous Delivery:
· Supports Test Driven Development (TDD).
· Supports Serverless or Containerization deployment architectures.
· Enables migration from Monolithic → microServices (decomposition).
· Helps remove organizational silos,
 empowering teams to own their Service from Code to Production.
· IT Culture improvement — provides better accountability and ownership in delivery.

process, just as business systems must
transform to meet ongoing business needs.

A Continuous Delivery Framework is the
glue that brings process and technology
together in a cohesive way. It is designed to
be deployed on highly scalable cloud infra-
structure, and may be used for developing
publicly accessible product or private/inter-
nal systems. It must support both new
development and ongoing maintenance
and feature development. The result is that
it accelerates feature velocity, automates
deployment and reduces overall delivery
costs.

Where To Draw The MVP Line

Many organizations have become familiar
with the term Minimum Viable Product
(MVP); however, few know where to draw
the line. MVP is the minimum functionality
that can be developed before “Single Story
Sprints” can effectively be implemented. A
Single Story Sprint is a small feature, bug fix
or unit of functionality that can be deployed
all the way to Production. A Continuous
Delivery Pipeline that enables Single Story
Sprints, effectively reduces delivery lead
times from days, weeks or months, down to
minutes.

DevIQ.io 8

Glossary

MVP
(Minimum Viable Product)
The scope that provides just enough business
value to deploy to users/customers, yet does not
add unnecessary features before getting the
product out and receiving real user feedback.

TDD
(Test Driven Development)
A process of developing software where require-
ments are used to build specific test plans and
test cases so that the solution directly addresses
all key requirements. Automated Unit Tests are
built into the codebase from Day 1.

Containerization

A lightweight alternative to full machine virtualiza-
tion that involves encapsulating an application in
a container with its own operating environment.

microService
A software design technique that enables
applications to be deployed as independent and
discrete services. A microService generally
follows the guidelines for a 12-factor App
(https://12factor.net/).

Serverless Computing

A method of providing backend computing
services on an as-used basis. The hardware is
completely abstracted from the consumer and
the services are charged based on usage during
the execution of code vs. uptime.

Single Story Sprint
An Agile development practice enabling rapid
deployment of a new feature, bug fix or unit of
functionality all the way to Production, in minutes
or hours vs. weeks or months.

Transformation is everybody’s job.
- W. Edwards Deming

Driven to Improve Life.
Partners in smart product engineering,

from concept to reality and beyond.

Copyright © 2016, 2022 DevIQ • All rights reserved.

To learn more, contact us at:
info@DevIQ.io

+1 303-232-3840
or visit us on the web at

DevIQ.io

9

Using LEAN principles early makes a signifi-
cant impact. The product development
cycle starts long before a developer starts
coding. Decomposing products and fea-
tures into small batches [or single story
sprints] provides visibility into the flow of
work from idea to production; improving IT
performance and reducing deployment
pain.

Conclusion

There is a significant need if not demand for
a measured approach to modernizing aging
IT capabilities. A systematic refactoring
approach leveraging DevOps principles can
be powerful; however, it is not enough with-
out a proven transformation strategy.

A Strangler Architecture transformation
pattern enables incremental change to
critical IT systems, without the business risk
of a rewrite or wholesale replacement.

Understanding and designing the right team
topology is key to success, as well as build-
ing a Continuous Delivery Pipeline and
DevOps culture that enables collaboration
and a product-oriented delivery mindset.

It’s not about whether the business needs to
deliver 10x faster — it’s about whether IT can
step up to the business demands, when
needed. It’s about making small improve-
ments and fixing failures more quickly,
resulting in more progress in less time.
Those that are increasing their IT agility are
those that are likely to succeed.

Building Software.
Improving Life.

